HW10 - First Law \& Calorimetry

Started: Nov 1 at 9:01am

Quiz Instructions

Homework 10 - First Law \& Calorimetry

Question 1 1pts

A 100 W electric heater ($1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$) operates for 11 min to heat the gas in a cylinder. At the same time, the gas expands from 1 L to 6 L against a constant atmospheric pressure of 3.527 atm . What is the change in internal energy of the gas?
64.21 kJ48.37 kJ67.79 kJ62.47 kJ

Question 2

The definition of internal energy is
$\Delta U=q+w$
Which of these three values are state functions? Select all of the correct answers.ΔUwq

Question 3

When 2.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston with an external pressure of 2.00 atm, the nitrogen gas expands from 2.00 to 5.00 L . What is the change in internal energy of this system?$-2.61 \mathrm{~kJ}$0$+2.61 \mathrm{~kJ}$

Question 4

A system had 150 kJ of work done on it and its internal energy increased by 60 kJ . How much energy did the system gain or lose as heat?The system gained 90 kJ of energy as heat.The system gained 60 kJ of energy as heat.The system gained 210 kJ of energy as heat.The system lost 90 kJ of energy as heat.The system lost 210 kJ of energy as heat.
Question 5
If a process is carried out at constant pressure and the volume of the system decreases, then $\Delta \mathrm{V}$ is
[Select]

Question 6

Which of the following will best help determine the direction of heat flow in a system?internal energyworkenthalpy

```
pressure
```


Question 7

Which of the following statements concerning the first law of thermodynamics is/are true? Select all of the correct answers.Internal energy lost by a system is always gained by the surroundings.The internal energy of the universe is always increasing.The universe is an isolated system.

Question 8

What is the value of work when a piston of volume 0.2 L expands against an external pressure of 200 kPa to a volume of 3.4 L?-640 J3.40 kJ640 J$-3.40 \mathrm{~kJ}$

Question 9

When 4.00 kJ of energy is transferred as heat to nitrogen in a cylinder fitted with a piston at an external pressure of 3.00 atm, the nitrogen gas expands from 1.00 L to 4.00 L against this constant pressure. What is $\Delta \mathrm{U}$ for the process?+3.09 kJ-4.91 kJ$+4.91 \mathrm{~kJ}$-0.912 kJ

Question 10

A piece of metal with a mass of 22 g at $92^{\circ} \mathrm{C}$ is placed in a calorimeter containing 53.7 g of water at $21^{\circ} \mathrm{C}$. The final temperature of the mixture is $55.3^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal? Assume that there is no energy lost to the surroundings.$-9.5 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$$1.3 \times 10^{4} \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$$9.5 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$$-1.3 \times 10^{4} \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

Question 11

Consider the following specific heat capacities:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s})=2.09 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=2.03 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
The heat of fusion for water is $334 \mathrm{~J} / \mathrm{g}$ and its heat of vaporization is $2260 \mathrm{~J} / \mathrm{g}$. Calculate the amount of heat required to convert 93 g of ice at $-36^{\circ} \mathrm{C}$ completely to liquid water at $35^{\circ} \mathrm{C}$.21 kJ52 kJ38 kJ7 kJ

The specific heat for liquid argon and gaseous argon is $25.0 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$ and $20.8 \mathrm{~J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$, respectively. The enthalpy of vaporization of argon is $6506 \mathrm{~J} / \mathrm{mol}$. How much energy is required to convert 1 mole of liquid Ar from $5^{\circ} \mathrm{C}$ below its boiling point to 1 mole of gaseous Ar at $5^{\circ} \mathrm{C}$ above its boiling point?6610 J6631 J

125 J

6735 J229 J
Question 13

 1 ptsCarbon monoxide reacts with oxygen to form carbon dioxide by the following reaction:
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}$ for this reaction is -135.28 kcal . How much heat would be released if 12.0 moles of carbon monoxide reacted with sufficient oxygen to produce carbon dioxide? Use only the information provided in this question.

412 kcal

135 kcal
1620 kcal

812 kcal
Question 14

1 pts

What mass of liquid ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ must be burned to supply 500 kJ of heat? The standard enthalpy of combustion of ethanol at 298 K is $-1368 \mathrm{~kJ} / \mathrm{mol}$.

16.8 g
29.7 g

126 g

Question 15

Burning 1 mol of methane in oxygen to form $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ produces 803 kJ of energy. How much energy is produced when 3 mol of methane is burned?

1606 kJ2409 kJ268 kJ803 kJ

Question 16

1 pts

Consider the following chemical equation:
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-2220 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
How much heat is given off when 11.0 g of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ is burned at constant pressure?26.0 kJ555 kJ2220 kJ1670 kJ

Question 17

1 pts

For a certain reaction at constant pressure, the change in internal energy is -52 kJ . In addition, the system does 46 kJ of expansion work. What is $\Delta \mathrm{H}$ for this process?6 kJ$-6 \mathrm{~kJ}$98 kJ

Question 18

If the products of a reaction have higher energy than the reactants, then the reaction...is endothermic.is exothermic.is not spontaneous.must be spontaneous.

Question 19

The specific heats and densities of several materials are given below:

Material	Specific Heat $\left(\mathrm{cal} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Brick	0.220	2.0
Concrete	0.270	2.7
Steel	0.118	7
Water	1.00	1.00

Calculate the change in temperature produced by the addition of 1 kcal of heat to 100 g of steel.$1.43^{\circ} \mathrm{C}$$84.7^{\circ} \mathrm{C}$$1.18^{\circ} \mathrm{C}$$37.0^{\circ} \mathrm{C}$

A 1.00 g sample of n -hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ undergoes complete combustion with excess O_{2} in a bomb calorimeter. The temperature of the 1502 g of water surrounding the bomb rises from $22.64^{\circ} \mathrm{C}$ to $29.30^{\circ} \mathrm{C}$. The heat capacity of the hardware component of the calorimeter (everything that is not water) is $4042 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is $\Delta \mathrm{U}$ for the combustion of n $\mathrm{C}_{6} \mathrm{H}_{14}$? One mole of $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$ is 86.1 g . The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.$-9.96 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$
$-4.52 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$$-5.92 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$$-1.15 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$

Question 21

When 0.485 g of compound X is burned completely in a bomb calorimeter containing 3000 g of water, a temperature rise of $0.285^{\circ} \mathrm{C}$ is observed. What is ΔU of the reaction for the combustion of compound X ? The hardware component of the calorimeter has a heat capacity of $3.81 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and the MW of X is $56.0 \mathrm{~g} / \mathrm{mol}$.$-4660 \mathrm{~kJ} / \mathrm{mol}$
$538 \mathrm{~kJ} / \mathrm{mol}$$-538 \mathrm{~kJ} / \mathrm{mol}$
$4660 \mathrm{~kJ} / \mathrm{mol}$

Question 22

Nitric acid can be manufactured in a multi-step process, during which nitric oxide is oxidized to create nitrogen dioxide.
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
Calculate the standard reaction enthalpy for the above reaction using the following thermodynamic data.
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g}) \quad \Delta \mathrm{H}_{1}^{\circ}=180.5 \mathrm{~kJ} / \mathrm{molrxn}$
$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}^{\circ}=66.4 \mathrm{~kJ} / \mathrm{molrxn}$

$-246.9 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$

-252.4 kJ/mol rxn

$-114.1 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$

Question 23

Calculate the standard reaction enthalpy for the following chemical equation.
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
Use the following thermochemical equations to solve for the change in enthalpy.

```
2H2(g)+CO (g) ->-\mp@subsup{\textrm{CH}}{3}{}OH(\textrm{I})}\quad\Delta\mp@subsup{H}{}{\circ}=-128.3\textrm{kJ}/\textrm{mol
2CH4}(\textrm{g})+\mp@subsup{\textrm{O}}{2}{}(\textrm{g})->2\mp@subsup{\textrm{CH}}{3}{}\textrm{OH}(\textrm{l})\quad\Delta\mp@subsup{\textrm{H}}{}{\circ}=-328.1\textrm{kJ}/\textrm{mol
2H2(g)+\mp@subsup{O}{2}{}(\textrm{g})->2\mp@subsup{\textrm{H}}{2}{}\textrm{O}(\textrm{g})}\quad\Delta\mp@subsup{\textrm{H}}{}{\circ}=-483.6\textrm{kJ}/\textrm{mol
```

$+42.0 \mathrm{~kJ} / \mathrm{mol}$
$+216 \mathrm{~kJ} / \mathrm{mol}$
$+155.5 \mathrm{~kJ} / \mathrm{mol}$$+206.1 \mathrm{~kJ} / \mathrm{mol}$

Question 24

Calculate the standard enthalpy change for the following chemical equation.
$2 \mathrm{HCl}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})$
Use the following thermochemical equations to solve for the change in enthalpy.
$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-202.4 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{HF}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-600.0 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$

$-516.6 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$

+1116.6 kJ/mol rxn\square
$-1587.2 \mathrm{~kJ} / \mathrm{mol}$ rxn
$+1587.2 \mathrm{~kJ} / \mathrm{mol}$ rxn
$-1015.4 \mathrm{~kJ} / \mathrm{mol}$ rxn
$+516.6 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
$+1088.2 \mathrm{~kJ} / \mathrm{mol}$ rxn
$+1015.4 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$
-1088.2 kJ/mol rxn
$-1116.6 \mathrm{~kJ} / \mathrm{mol}$ rxn

Question 25

Calculate the standard enthalpy change for the following chemical equation.
$4 \mathrm{FeO}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Use the following thermochemical equations to solve for the change in enthalpy.
$\mathrm{Fe}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeO}(\mathrm{s}) \quad \Delta \mathrm{H}=-269 \mathrm{~kJ} / \mathrm{mol}$
$2 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}=-825 \mathrm{~kJ} / \mathrm{mol}$$-2726 \mathrm{~kJ} / \mathrm{mol}$$-574 \mathrm{~kJ} / \mathrm{mol}$$-556 \mathrm{~kJ} / \mathrm{mol}$$574 \mathrm{~kJ} / \mathrm{mol}$$556 \mathrm{~kJ} / \mathrm{mol}$

Calculate the enthalpy change for the following chemical equation.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
Use the following thermochemical data to solve for the change in enthalpy.$-10.0 \mathrm{~kJ} / \mathrm{mol}$ rxn$-77.6 \mathrm{~kJ} / \mathrm{mol}$ rxn$-5.0 \mathrm{~kJ} / \mathrm{mol} \mathrm{rxn}$

Which of the following substances have $\Delta H_{f}{ }^{\circ}=0$? Select all of the correct answers.$\mathrm{HCl}(\mathrm{aq})$$\mathrm{F}_{2}(\mathrm{~g})$$\mathrm{Na}(\mathrm{s})$$\mathrm{HCl}(\mathrm{g})$

| Question 28 |
| :--- | :--- |
| Calculate the average S-F bond energy in SF_{6} using the following $\Delta \mathrm{H}_{\mathrm{f}}$ values: |
| $\mathrm{SF}_{6}(\mathrm{~g})=-1209 \mathrm{~kJ} / \mathrm{mol}$ |
| $\mathrm{S}(\mathrm{g})=279 \mathrm{~kJ} / \mathrm{mol}$ |
| $\mathrm{F}(\mathrm{g})=79 \mathrm{~kJ} / \mathrm{mol}$ |
| $289 \mathrm{~kJ} / \mathrm{mol}$ bonds |
| $327 \mathrm{~kJ} / \mathrm{mol}$ bonds |
| $196 \mathrm{~kJ} / \mathrm{mol}$ bonds |
| $582 \mathrm{~kJ} / \mathrm{mol}$ bonds |
| $416 \mathrm{~kJ} / \mathrm{mol}$ bonds |

Question 29

Using the bond energy data provided, calculate $\Delta \mathrm{H}$ for the following reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$

Bond	Bond Energy (kJ/mol)
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{Cl}-\mathrm{Cl}$	242
$\mathrm{H}-\mathrm{Cl}$	432

Question 30

The standard molar enthalpy of formation of $\mathrm{NH}_{3}(\mathrm{~g})$ is $-46.11 \mathrm{~kJ} / \mathrm{mol}$. What is the standard molar internal energy of formation of $\mathrm{NH}_{3}(\mathrm{~g})$?$-48.59 \mathrm{~kJ} / \mathrm{mol}$$2433 \mathrm{~kJ} / \mathrm{mol}$$-2525 \mathrm{~kJ} / \mathrm{mol}$$-43.63 \mathrm{~kJ} / \mathrm{mol}$

